Biset functors and genetic sections for p-groups
نویسندگان
چکیده
منابع مشابه
Rational p-biset functors
In this paper, I give several characterizations of rational biset functors over p-groups, which are independent of the knowledge of genetic bases for p-groups. I also introduce a construction of new biset functors from known ones, which is similar to the Yoneda construction for representable functors, and to the Dress construction for Mackey functors, and I show that this construction preserves...
متن کاملRhetorical biset functors, rational p-biset functors and their semisimplicity in characteristic zero
Rhetorical biset functors can be defined for any family of finite groups that is closed under subquotients up to isomorphism. The rhetorical p-biset functors almost coincide with the rational p-biset functors. We show that, over a field with characteristic zero, the rhetorical biset functors are semisimple and, furthermore, they admit a character theory involving primitive characters of automor...
متن کاملK-theory, genotypes, and biset functors
Let p be an odd prime number. In this paper, we show that the genome Γ(P ) of a finite p-group P , defined as the direct product of the genotypes of all rational irreducible representations of P , can be recovered from the first group of K-theory K1(QP ). It follows that the assignment P 7→ Γ(P ) is a p-biset functor. We give an explicit formula for the action of bisets on Γ, in terms of genera...
متن کاملSimple biset functors and double Burnside ring
Let G be a finite group and let k be a field. Our purpose is to investigate the simple modules for the double Burnside ring kB(G,G). It turns out that they are evaluations at G of simple biset functors. For a fixed finite group H, we introduce a suitable bilinear form on kB(G,H) and we prove that the quotient of kB(−, H) by the radical of the bilinear form is a semi-simple functor. This allows ...
متن کاملIdempotents of double Burnside algebras, L-enriched bisets, and decomposition of p-biset functors
Let R be a (unital) commutative ring, andG be a finite group with order invertible in R. We introduce new idempotents εT,S in the double Burnside algebra RB(G,G) of G over R, indexed by conjugacy classes of minimal sections (T, S) of G (i.e. sections such that S ≤ Φ(T )). These idempotents are orthogonal, and their sum is equal to the identity. It follows that for any biset functor F over R, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2005
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2004.06.034